RIGIDITY FOR RIGID ANALYTIC MOTIVES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigid Analytic Flatificators

Let K be an algebraically closed field endowed with a complete non-archimedean norm. Let f : Y → X be a map of K-affinoid varieties. We prove that for each point x ∈ X, either f is flat at x, or there exists, at least locally around x, a maximal locally closed analytic subvariety Z ⊂ X containing x, such that the base change f−1(Z)→ Z is flat at x, and, moreover, g−1(Z) has again this property ...

متن کامل

Rigid Analytic Picard Theorems

We prove a geometric logarithmic derivative lemma for rigid analytic mappings to algebraic varieties in characteristic zero. We use the lemma to give a new and simpler proof (at least in characteristic zero) of Berkovich’s little Picard theorem [Ber, Theorem 4.5.1], which says there are no nonconstant rigid analytic maps from the affine line to non-singular projective curves of positive genus, ...

متن کامل

Rigid Analytic Modular Symbols

Let p be a prime > 3 and consider the Tate algebra A := Q p z defined to be the Banach algebra of formal power series over Q p that converge on the closed unit disk B[0, 1] ⊆ C p with the supremum norm ||f || := sup z∈B[0,1] |f (z)| for f ∈ A. Equivalently, we have (0.1) A = f (z) = ∞ k=0 a k z k a k ∈ Q p and lim k→∞ a k = 0 and the norm is given by (0.2) ||f || = sup k |a k |, for f = ∞ k=0 a...

متن کامل

Overview of Rigid Analytic Geometry

The idea is simple: we want to develop a theory of analytic manifolds and spaces over fields equipped with an arbitrary complete valuation. Of course, it is a standard fact that such a field must be either R, C, or a field with a nonarchimedean valuation, so what we really mean is that we want to develop a theory of nonarchimedean analytic spaces. Doing this näıvely (i.e., defining manifolds in...

متن کامل

On rigidity of analytic black holes

We establish global extendibility (to the domain of outer communications) of locally defined isometries of appropriately regular analytic black holes. This allows us to fill a gap in the Hawking–Ellis proof of black–hole rigidity, for “non–degenerate” black–holes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Institute of Mathematics of Jussieu

سال: 2019

ISSN: 1474-7480,1475-3030

DOI: 10.1017/s1474748019000501